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I. A representation T of a topological semigroup S in a Banach space ~ is said to be 
almost periodic (a.p.) if VxE~ the orbit O(x)={yJy=T(s)x(sCS)} is strongly precompact, 
or equivalently, the strong closure B T = T(S) is strongly compact. A compact semigroup B T 
is said to be a Bohr compactum, and its smallest two-sided ideal KT is called the Sushkevich 
kernel of T. For these basic definitions, see [I]. Below we assume that K T is a group. This 
is valid, in particular, if S is Abelian. The identity PCKr is a projector in ~. We call 
it the boundary projector, and ~1=ImP, ~0 = KerP the boundary and inner subspace of T. Ob- 

viously, ~=~i+~0, and we can prove that ~i and ~0 are invariants. If T is contractive 
(we can always arrange this by going over to an equivalent norm in ~), then lIP[[ = I for P # 
0, that is, P is an orthoprojector. In the development of [I, 2] we establish the following 
theorem on the removal of the boundary spectrum. 

THEOREM I. The inner and boundary subspaces are described as follows: 

~o={~lOEO(x)}, ~ = . ~ V ~ ,  (1) 
x 

where VX runs through finite-dimensional invariant subspaces for which T[Vx are irreducible 
and unitary up to equivalence. If T is contractive, then TI~I is an isometric representa- 

tion, and Br[~i=(TI~i)(S) is a compact (in the strong topology) group of isometries. 

The proof is based on the fact that I) A § AP is a homomorphism-retraction B T § K T and 
2) for Banach representations of compact groups the theory of Peter and Weyl is valid in a 
suitable form. 

Suppose that S is Abelian. Then it can be converted to a directed set by putting s ~ t 
if s is divisible by t or s = t. It turns out that 

~o = {xl lim T (s)x = 0}. (2) 

Furthermore, the theorem on the removal of the boundary spectrum with the refinement (2) for 
~0 is valid for the wider class of asymptotic almost periodic (a.a.p.) representations. 
This class is defined as follows: T is bounded [that is,supl I T(s) II< oo ] and the direction 

$ 

{T(s)} is asymptotically strongly precompact (that is, any subdirection of it contains a 
strongly convergent subdirection). 

The Sushkevich kernel KT for an a.a.p. T is constructed as the strong u-limit set of 
the direction {T(s)}. The Sushkevich kernel is a compact Abelian group. The identity P of 
this group is called (as before) the boundary projector. It is interesting to note that the 
removal of the boundary spectrum [with the refinement (2)] implies asymptotic almost period- 
icity, so that in a finite calculation these properties are equivalent. We also note that 
because S is Abelian 

~ ,  = ~'Wx,  (3) 

where Wx={x[T(s)x=x(s)x(sES)} are the weighted subspaces corresponding to the unitary 
weights X (that is, unitary characters of the semigroup for which W X z 0). 

A bounded representation T is said to be convergent if the direction {T(s)} is strongly 
convergent. 

THEOREM 2. For the representation T to be convergent it is necessary and sufficient 
that it should be a.a.p, and should not have unitary weights other than I. Also, 
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lim T(s) = PI, where PI is the projector onto the subspace of fixed vectors W1={xlY(s)x= 
S 

x( s  ES)}, KerP1 = ~o. 

As an example we consider the representation nJ-+A n, A C End ~, of the additive semi- 
group Z+. If it is a.p., then A is called an a.p. operator (in this case, a.a.p, is no 
different from a.p.). An example is a compact operator with bounded powers. A more general 
situation is associated with a theorem of Yosida and Kakutani [3]: supHAnI[<oo, r(A) = I [r(.) 

n~! 

is the spectral radius], Nm: A m=C + R, where C is compact and r(R) < I. For such operators 
we can verify directly that they are a.p., which gives a new proof of the theorem of Yosida 
and Kakutani. 

If A is an algebraic operator with spectrum in the unit disk and all the roots of the 
minimal polynomial that lie on the unit circle are simple, then A is an a.p. operator. In 
particular, any projector is an a.p. operator. 

Let us state the results that follow from Theorems I and 2 that apply to operators. 

COROLLARY I. If A is an a.p. operator in a Banach space ~, then ~ = ~lq-~0, where ~i 
is the closure of the linear hull of the eigenvectors that correspond to unitary eigenvalues, 
and ~0={xilimAnx=0}. If HAIl ~ I, then the projector P that effects this decomposition (ImP = 

~i, KerP=~0) is orthogonal [P = 0 for HAll < I and even for r(A) < I], and the operator AB~ I 
is an invertible isometry. 

COROLLARY 2 (cf. [4]). For the strong limA n to exist it is necessary and sufficient 

that A should be a.p. and should not have unitary eigenvalues other than |. Also, limA"=P1, 

where PI is the projector onto the subspace of fixed vectors of the operator A such that 
KerP1 = Im (I -- A). 

This result can be regarded as a strengthening of the statistical ergodic theorem in 
the a.p. situation. Because of the almost periodicity, no restrictions on the Banach space 

arise here. 

Similarly we can consider an a.p. representation t + U t of the additive semigroup ~§ 
(that is, one-parameter a.p. semigroups in ~ ). Omitting the statements of the results, we 
merely note that from the theorem on the removal of the boundary spectrum there follows the 
well-known theorem that on the semiaxis t > 0 any a.p. function (a.p.f.) ~ (1) has the form 

= ~i + ~0, where ~l is the uniform limit of linear combinations of exponents e ~>'t, %E ~ (% 
is thereby extended to an a.p.f, on the whole axis), and ~0 tends to zero as t § +~. This 
is the general form of an a.p.f, on the semiaxis, since the converse assertion is trivial. 

2. In a Banach space ~ with cone g we can naturally distinguish the class of nonnega- 
tive representations, that is, those such that T(s) > 0 for all sE S. The following general- 
ization of the classical theorem of Perron and Frobenius is true for this class. 

THEOREM 3. Let ~ be a Banach space with total cone g (that is, ~ = g--g~. Let T be 
a nonnegative a.p. representation of a topological semigroup S for which the Sushkevich ker- 
nel K T is a group. We assume that there is a vector v whose orbit is nonzero, that is, inf 

S 

[[ T(s)v[I> O. Thenthere are an invariant vector h > 0 and an invariant linear functional ~ > 0 
such that p(h) = I. 

We shall call h, p a Perron--Frobenius pair (PF-pair) for T. Let us describe the con- 
struction of a PF-pair under the conditions of Theorem 3. We observe that P ~ O, since Pv 
0. But then there is an x0 ~ 0 such that Px0 ~ O. Let us put h= I (A~)dA, ~= I s 

gr K7 
where dA is the normalized Haar measure on Kr, s g*, k~0, (%Pxo)>0. The elements h and P0 

are invariant, and ~0(h):=k(h)= ~s It remains to put ~=~0/~0(h). 

KT 

Remark. If S is Abelian, it is sufficient that T should be a.a.p. 

COROLLARY 3. Let ~ be a Banach space with a total cone, and A > 0 an aop. operator. 
Then either A n tends strongly to zero as n § ~, or A has a PF-pair h, p: Ah= h > 0, A*~ = p 
0, h(~) = 1. 
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This assertion for compact A ~ U gives the well-known Krein-Rutman theorem (with the con- 
dition of boundedness of powers). A more general theorem about the existence of a PF-pair 
has been obtained in the Yosida--Kakutani situation. 

If the cone ~ is solid (that is, ~ is a Krein space), then the representation T ~ 0 
i s  s a i d  to  be i ndecomposab l e  i f  V X ~ 0  (x=/=O) V~6~* ,  ~:>~0 (~vaO) ~sCS:  ~(T(s)x):>O,, and 
p r i m i t i v e  i f  v x ~ O  (x=/=O) 2 S 6 S :  T(s)x>O [ t h a t  i s ,  T ( s ) x  i s  an i n t e r i o r  p o i n t  o f  the  c o n e ] .  
These c o n c e p t s  c a r r y  o v e r  t o  o p e r a t o r s  A ~ 0 t h r o u g h  the  c o r r e s p o n d i n g  r e p r e s e n t a t i o n s .  

LEMMA 1. For  an i ndecomposab le  a . p .  r e p r e s e n t a t i o n  t h a t  s a t i s f i e s  t he  c o n d i t i o n s  of  
Theorem 3 the  e l emen t s  of  a P F - p a i r  a r e  p o s i t i v e ,  and the  s u b s p a c e s  of  i n v a r i a n t  v e c t o r s  and 
f u n c t i o n a l s  a r e  o n e - d i m e n s i o n a l .  

THEOREM 4. Le t  T ~ 0 be an a . a . p ,  r e p r e s e n t a t i o n  o f  an A b e l i a n  t o p o l o g i c a l  semigroup S 
in  a K r e i n  space  ~ t h a t  has  a v e c t o r  whose o r b i t  i s  n o n z e r o .  I f  T i s  p r i m i t i v e ,  then  l im 

s 

T(s)  x = ~ (x) h ,x  E ~, where h ,  ~ i s  a P F - p a i r  f o r  T. C o n v e r s e l y ,  i f  t he  p r e l i m i n a r y  r e s t r i c -  
t i o n s  on T a r e  s a t i s f i e d  and T i s  i n d e c o m p o s a b l e ,  t hen  t he  f a c t  t h a t  i t  i s  c o n v e r g e n t  i m p l i e s  
that it is primitive. 

COROLLARY 4. If A ~ 0 is a primitive a.p. operator in a Krein space ~, then the strong 
Jim A", exists, and if this limit is nonzero, it is equal to ~(.)h, where h, ~ is a PF-pair 

for A. 

3. Let Q be a compactum, ~= C(Q)~ and ~=C+(Q) the cone of nonnegative continuous 
functions. In this situation Theorem 3 leads to the following result. 

THEOREM 5. Let T be a nonnegative a.p. (or a.a.p, in the Abelian case) representation 
of a topological semigroup S in the space C(Q), and suppose that the Sushkevich kernel K T is 
a group. If r(T(s)) ~ I, then there is a PF-pair for T. 

In fact, UT(s)I[I = iIT(s)ll ~ r(T(s)) = I, that is, the orbit of the function I is nonzero. 

A representation T in C(Q) is said to be stochastic (Markov) if T(s) 1 E I. 

Example. Let G be a compact group, Q a compactum, and F:G § Homeo(Q) the action of G in 
Q. Putting (Tp(g)~)(1)=~(F(g-i)t), we obtain a stochastic representation of G in C(Q). 

Two representations TI and T2 in C(QI) and C(Q2) are said to be positively equivalent if 
there is an invertible operator V:C(QI) + C(Q2) interlacing them that is nonnegative together 
with V -I. We note that automorphisms of the Krein space C(Q) are described as follows: (V~) x 
(t) = ~(0~(y(0), where y:Q § Q is a homeomorphism, and m > 0. If ~ = I, and only in this 
case, V is stochastic. Therefore, any stochastic representation of G in C(Q) is generated 
by some action of it in Q. 

LEMMA 2. For a representation T ~ 0 in C(Q) to be positively equivalent to a stochastic 
representation it is necessary and sufficient that there should be an invariant function h > 0. 

From now on we assume that T satisfies all the conditions of Theorem 5. Let P be its 
boundary projector. Obviously, P ~ O, and only this property is used below. Let us put 

= PI, E+ = {tlg(t) > 0}. We define the support suppP of the projector P as the set of all 
t such that if ~EC(Q), ~0, ~(0va0, then P~=0 (this definition can be applied to any 
nonnegative operator). We now put E = ~+ ~ supp P and identify points in E that are in- 

distinguishable by functions of the form p~ = P~/~. We denote the resulting factor space 
by E, and the composition of the operator P with the transition to functions on E by P. 

LEMMA 3. The factor space E is compact. The operator P maps C(Q) onto C(E), and IIPI[ 
I. 

COROLLARY 5. The ordered Banaeh spaces ImP and C(E) are isomorphic. 

On the basis of what we have said we can prove the following basic structural theorem. 

THEOREM 6. A representation T on its boundary subspace ~ is positively equivalent to 
the stochastic representation generated by the natural action F T of the Sushkevich kernel K T 
on the factor compactum E. If T is stochastic, then this equivalence is an isometry. 

A representation T is said to be ergodic if the action FT is transitive and also E = Q 
(that is, e > O, suppP = Q). In the general case E splits into the orbits of F T . Their 
inverse images in E are called ergodic classes. Every ergodie class is closed in E and is 
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the union of some family of equivalence classes corresponding to the factorization E § E. 
The latter are called imprimitivity classes; the number of them (or =, if there are infinitely 
many of them) is called the index of imprimitivity of the given ergodic class. An ergodic 
class is said to be primitive if its index of imprimitivity is equal to I. Finally, an 
ergodic representation is said to be topologically imprimitive if its unique ergodic class 
is primitive. 

THEOREM 7~ For a representation T to be ergodic it is necessary/ and sufficient that 
it should be indecomposable. 

THEOREM 8. For a representation T to be topologically primitive it is necessary and 
sufficient that it should be primitive. 

We note that indecomposability in C(Q) reduces to the following: V~0 (~=/=0)~'tEQ~s: 
(T(s) r 0 

With the classes described above there are associated ergodic components and components 
of imprimitivity of the representation itself. Their construction is rather a~f~ward, and we 
~shall not dwell on it here. 

The spectral properties of ergodic representations are summarized in the following theo- 
rem. 

THEOREM 9. Let T be an ergodic representation. Then I) the unitary weights of T form 
a group, the corresponding weighted subspaces are one-dimensional, and the moduli of all the 
weighted functions are proportional to an invariant function h > 0 (in the stochastic r 
they are constants); 2) the representation T is positively equivalent to a stochastic repre- 
sentation in the same space; 3) if X is a unitary weight, then the representation % | T is 
equivalent to T; 4) if S is Abelian, then the representation T I ~ is positively equivalent 
to the representation generated by the regular action of S on the Sushkevich kernel KT.~ The 
group of unitary weights coincides with the dual group K~. 

The spectral theory of stochastic a.p. operators in C(Q) was mainly constructed in [4-6]. 
These results are covered by the theory developed above~ from which there follows the follow- 
ing series of assertions. 

THEOREM 10. Let A be an a.p. operator in C(Q), A I> O, r(A) = I. We denote the boundary 
projector by P. Then the following assertions are true. 

I. AnlKerP-+ 0 (strongly), and AIImP is positively equivalent to the stochastic opera- 

tor generated by a homeomorphism F A of some compactum E. 

2. There is a PF-pair h, ~ for the operator A; h > 0, ~ > 0. 

3. If A is indecomposable, then a) E is a factor compactum of the compactum Q, and the 
homeomorphism F A is topologically conjugate to a topologically transitive shift with 
respect to the group K; b) the unitary discrete spectrum of A is a group isomorphic 
to K*; c) the eigensubspaces corresponding to the unitary eigenvalues are one-dimen- 
sional; the moduli of the corresponding eigenfunctions are proportional to h; d) for 
every eigenvalue ~ with IXI = I the operator %A is similar to A, and thus the spec- 
trum of A is invariant with respect to multiplication by ~. 

4. If A is primitive, then lira A~=[I'r for all functions q~EC(Q) 
n-->oo 

The last assertion gives a new approach to the so-called "Ruelle version" of the Perron-- 
Frobenius theorem [7], and is also applied in some related questions in the theory of dynami- 
cal systems [8]. 
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ASYMPTOTIC OF SOLUTIONS THAT COVER INTEGRAL O-SET OF A 

NONLINEARSYSTEM 

S. K. Norkin UDC 517.925.34 

I. Let us consider the system 

defined in the domain 

~z (x) dy/dx = F (x, y), (i)  

S = { ( x , y ) : x 6 ] O ;  al, llyllE[O;b[ }, (2) 

where  x E ~+, (ul, uz, u3) E NR X ~m ~ ~a--k--m n > k + m, y colon (ul, ~ ,  u~); (=1, ~z, %):~+-+ R~; a (x) 

d i a g  (ax(x),~2(x),ea(x)); (F1, Fz, F3):~I+"-+~ k • ~ • ~"-~-~, F(x,y~=colon(F,(x,y) ,F~(x,y) ,Fa(x,y));  a, bE~+; 
and I1.11 i s  t h e  E u c l i d e a n  norm. 

Sys tem (1) i s  assumed t o  be  f r o m  t h e  c l a s s  (�9 ; u n i q u e n e s s )  i n  t h e  domain S, i . e . ,  t h e  
v e c t o r - v a l u e d  f u n c t i o n s  a and F a r e  c o n t i n u o u s  in  t h e  domain S and have  a p r o p e r t y  which  
e n s u r e s  t h e  u n i q u e n e s s  of  s o l u t i o n  of  s y s t e m  (1) t h a t  s a t i s f i e s  a r b i t r a r y  i n i t i a l  c o n d i t i o n s  
in  S. 

Several authors [I-6] have studied the O-set ~ S  that is covered by the O-solutions of 
system (I), i.e., 

= {(x ,y(x) )6S  :~(x)y ' (x)=-  F(x,y(x)),  lira Ily(x)[I = O} 
~ + 0  

f o r  t he  c a s e  n = k + m, h a v e  s e p a r a t e d  the  " s t a b l e "  and the  " u n s t a b l e "  components  ul  and u2 
of  t h e  v e c t o r  y ,  and have  a l s o  f o u n d  t h e  c o n d i t i o n s  unde r  which dim ~ = n - - k +  1. In  t h e  
present article, we find the asymptotic for the O-solutions of the set ~ on the basis of 
the obtained two-sided estimates for the component u3 when n > k + m. 

2. We suppose that the vector-valued function P = colon (F1, F2, F3) satisfies the fol- 
lowing conditions: The following inequalities are satisfied in the domain S for all x, y = 
colon(ul, uz, u3): 

(ul, & (x, y)) < - -  L, (x)II u~ II' + h (x)II Y I12, 

(u2, P~ (x, y)) >~ L~ (x)[I uz II" - -  Z~ (x)!I Y IlL 

I(u3, F3 (x, y)) - -  ~0 (x)II u~ I? 1 <~ L3 (x)II u311 ~- + X3 (x) II Y Y, 

where  t h e  f u n c t i o n s  L i ( x )  and ~ j ( x ) ,  i = 1, 2,  3 and j = O, 1, 2, 3, a r e  d e f i n e d  and con -  
t i n u o u s  i n  t h e  i n t e r v a l  ]0;  a [  and Xj(x)  /> O, L3(x)  + X3(x) >/ O. 

L e t  t h e  a s y m p t o t i c  o f  t h e  f u n c t i o n  ~ i ( x )  and the  f u n c t i o n s  L i ( x )  and Xj (x )  be  d e f i n e d  
by  t h e  f o l l o w i n g  e q u a t i o n s :  

(3) 

(4) 

(5) 

lim ~ j ( x ) = O ,  ] =  1, 2, 3; 
x-~+0 (6) 

lira ~ze(x)/tza(x)= c i <  + oo, i =  1,2; (7)  
x--~+O 

Li(x ) =  L i - d i ( x  ), i =  1,2; L~(x)=  La+d3(x), (8) 
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